Optimal control and quantum dynamics

Esa Räsänen

Nanoscience Center, Department of Physics, University of Jyväskylä, Finland

CECAM, July 23, 2011
Outline

- Some motivation
- TDDFT I - Side remark: “Initial-state dependence”
- Optimal control theory (OCT) and applications
 - Control of excitations
 - Control of 1-electron ionization
 - Control of 2-electron ionization (OCT & TDDFT)
Long-term objectives

- Laser-control of molecules
 - Laarmann et al. (2007)

- Electromagnetic control of low-dimensional systems
 - Goldman (2007)
 - Delft Qubit Project

- 4th generation solar cells
 - Wagner (2009)
TDDFT: Initial-state dependence

Reminder: we propagate individual particles exposed to

\[\nu_{KS}(\mathbf{r}, t) = \nu_{ext}(\mathbf{r}, t) + \nu_H(\mathbf{r}, t) + \nu_{xc}(\mathbf{r}, t) \]

system classicism all the trouble!

\[\nu_{xc}(\mathbf{r}, t) = \nu_{xc}[n(\mathbf{r}; t_0, \ldots, t), \Phi_0, \Psi_0](\mathbf{r}, t) \]

density at previous times

initial KS wave function

initial many-body wave function

Example: Two 2D Gaussian wave packets in magnetic field

\[\psi_{\pm}(x, y) = \frac{1}{a \sqrt{\pi}} \exp \left[-\frac{(x \pm a)^2 + y^2}{2a^2} \right] \exp[\pm ix/a] \]

- initially at rest
- interaction effects at \(t > 0 \):
 => repulsion
 => Lorentz force
 => “flower-like” motion

- initial wave function

\[\Psi(r_1, r_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_+(r_1) & \psi_+(r_2) \\ \psi_-(r_1) & \psi_-(r_2) \end{vmatrix} \]

- initial density

\[\rho(x, y) = \frac{2e^{1 - \frac{x^2+y^2}{a^2}}}{\pi a^2(e^4 - 1)} \left[- \cos(2y/a) + e^2 \cosh(2x/a) \right] \]
Quiz

1. How to construct the initial Kohn-Sham orbitals?

(a) orthonormalize the wave-packet orbitals and use them
(b) simply use the wave packets as initial Kohn-Sham orbitals
(c) take the square root of the exact density (divided by two)
(d) they cannot be properly constructed in this case
Quiz

1. How to construct the initial Kohn-Sham orbitals?

(a) orthonormalize the wave-packet orbitals and use them
(b) simply use the wave packets as initial Kohn-Sham orbitals
(c) take the square root of the exact density (divided by two)
(d) they cannot be properly constructed in this case
1. How to construct the initial Kohn-Sham orbitals?

(a) orthonormalize the wave-packet orbitals and use them
(b) simply use the wave packets as initial Kohn-Sham orbitals
(c) take the square root of the exact density (divided by two)
(d) they cannot be properly constructed in this case

2. Are there alternative choices for orthonormal orbitals that give the exact initial density?

(a) no
(b) yes - one other choice
(c) yes - infinitely many choices
Quiz

1. How to construct the initial Kohn-Sham orbitals?
 (a) orthonormalize the wave-packet orbitals and use them
 (b) simply use the wave packets as initial Kohn-Sham orbitals
 (c) take the square root of the exact density (divided by two)
 (d) they cannot be properly constructed in this case

2. Are there alternative choices for orthonormal orbitals that give the exact initial density?
 (a) no
 (b) yes - one other choice
 (c) yes - infinitely many choices => Harriman construction
Harriman construction

“For any nonnegative, normalized density an arbitrary number of orthonormal orbitals can be constructed with squares which sum to the given density.”

Harriman orbitals:

$$\varphi_i(x, y) = \sqrt{\frac{\rho(x, y)}{N}} \exp[i k f(x)]$$

with any set of $k = 0, \pm 1, \pm 2, \ldots$

and with

$$f(x) = \frac{2\pi}{N} \int_{-\infty}^{x} dx' \int_{-\infty}^{\infty} dy \rho(x', y)$$

It is straightforward to show that

1. $$\sum_{i=1}^{N} |\varphi_i(x, y)|^2 = \rho(x, y)$$

2. $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx\, dy \, \varphi_{k'}^*(x, y) \, \varphi_k(x, y) = \delta_{kk'}$$
Time-propagation (animation follows...)

Fig: Initial density for the time-propagation with different methods.
Gateway Arch in St. Louis, Missouri, USA

\[x = \frac{L}{C} \cosh^{-1} \left(1 + \frac{y}{A} \right) \]

\[y = A \left(\cosh \frac{Cx}{L} - 1 \right) \]
Optimal control: Overview

- Classical control since 1697
- General goals: (i) control of chemical reactions (e.g. molecular design), (ii) coherent control of spin/charge operations (qubits)
- “Traditional” control in chemistry: Learning-loop experiments

Quantum optimal control theory (OCT)

Key question: What is the external time-dependent field that drives the system into a predefined goal?

\[i \frac{d}{dt} |\Psi(t)\rangle = \hat{H} \left[\epsilon_k(t) \right] |\Psi(t)\rangle \]

control functions

- Usually the control function is an electric field (laser pulse)

 \[\hat{H}(t) = \hat{H}_0 + \epsilon(t) \hat{D} \]

- Most commonly the objective is the transition probability to a target state
Formulation of OCT

Find the extremal points of the functional

\[J[\Psi, \chi, \epsilon] = J_1[\Psi] + J_2[\epsilon] + J_3[\Psi, \chi, \epsilon] \]

target functional

\[J_1[\Psi] = \langle \Psi(T) | \hat{O} | \Psi(T) \rangle = |\langle \Psi(T) | \Psi_{\text{target}} \rangle|^2 \]

here \(\hat{O} \) is a projection operator

field constraint

\[J_2[\epsilon] = -\alpha \left[\int_0^T dt \ \epsilon^2(t) - E_0 \right] \]

(with fixed fluence)

fulfillment of the TD-SE

\[J_3[\Psi, \chi, \epsilon] = -2 \ \text{Im} \left[\int_0^T dt \ \langle \chi(t) | i \frac{d}{dt} - \hat{H}(t) | \Psi(t) \rangle \right] \]
Control equations

- Forward propagation for $|\Psi(t)\rangle$
 \[i \frac{d}{dt} |\Psi(t)\rangle = \hat{H}(t) |\Psi(t)\rangle, \quad |\Psi(0)\rangle = |\Psi_{\text{initial}}\rangle \]

- Backward propagation for $|\chi(t)\rangle$
 \[i \frac{d}{dt} |\chi(t)\rangle = \hat{H}(t) |\chi(t)\rangle, \quad |\chi(T)\rangle = \hat{O} |\Psi(T)\rangle \]

- Solution field:
 \[\epsilon(t) = -\frac{1}{\alpha} \text{Im} \left[\langle \chi(t)|\mu|\Psi(t)\rangle \right] \quad \text{with} \quad \int_0^T dt \, \epsilon^2(t) = E_0 \]

Application 1: Control of current in a quantum ring

Experiments:

Model:
Coherent spin-switch / single-qubit gate

Application 2: Enhancing ionization through pulse shaping

Optimize this!

Target operator:

$$\hat{O} = \hat{1} - \sum_{i}^{\text{bound}} |\varphi_i\rangle \langle \varphi_i|$$
Pulse constraints

Representation in the basis

\[f(t) = f_0 + \sum_{n=1}^{N} \left[f_n \sqrt{\frac{2}{T}} \cos(\omega_n t) + g_n \sqrt{\frac{2}{T}} \sin(\omega_n t) \right] \]

Sum-rule constraint:

\[\int_0^{T} dt \, f(t) = 0 \quad \Rightarrow \quad f_0 = 0 \]

Endpoints:

\[f(0) = f(T) = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} f_n = 0 \]

Cutoff frequency:

\[\omega_{\text{max}} = 2 \omega_0 \]

where the initial frequency (before optimization) is \(\omega_0 = 0.114 \text{ a.u.} \) -- a typical value for frequency-doubled Ti:S lasers with \(\lambda = 400 \text{ nm} \)

Pulse length: eight cycles corresponding to \(T \approx 5.3 \text{ ns} \)

Pulse strength (fluence) fixed:

\[F_0 = \int_0^{T} f^2(t) \, dt = \text{const.} \]
Effect of pulse optimization

(a) parallel polarization

(b) perpendicular polarization

Application 3: Enhancing ionization in a two-particle system

1D model with soft-Coulomb interaction

- exactly solvable (on a 2D grid - x and y as electron coordinates)
- in TDDFT with 1D-LDA

\[V(x, y) = -\frac{1}{\sqrt{(x + d/2)^2 + 1}} - \frac{1}{\sqrt{(x - d/2)^2 + 1}} - \frac{1}{\sqrt{(y + d/2)^2 + 1}} - \frac{1}{\sqrt{(y - d/2)^2 + 1}} + \frac{1}{\sqrt{(x - y)^2 + 1}} \]

Main idea:

Use the density (outside the molecule) as the target for ionization within TDDFT-OCT. Compare the result with the exact case.

Ionization yield in different approximations

End of laser pulse

- Exact
- Ind
- OEP
- LDA

density [a.u.]

$t [\text{a.u.}]$
Approximate optimized laser pulses applied to exact 1D H2

Ionization yield

Laser pulses

End of laser pulse

- Density [a.u.]
- t [a.u.]

- e [a.u.]
- t [a.u.]

- Exact
- Ind
- LDA
- OEP

- Green
- Black
- Blue
- Red
Optimal control theory (OCT) is a powerful tool to achieve quantum mechanical targets via optimization of the external field.

Ionization of small molecules can be remarkably enhanced by pulse shaping. A density target can be used to describe many-electron ionization, and optimization within ALDA produces pulses that work well in a real system (exact solution / experiment!)

Summary

Thanks to: Ville Kotimäki, Tobias Kramer, Alberto Castro, Jan Werschnik, Maria Hellgren, Angel Rubio, E.K.U. Gross

OCTOPUS code
(real-space & real-time DFT/TDDFT)
freely available at: www.tddft.org
Thank you