Non Collinear Magnetism in the Elk Code

F. Essenberger, S. Sharma, J.K. Dewhurst

Cecam Workshop 2011
1 Magnetic Ground State Structure

- What is collinear magnetism (CM) and non collinear magnetism (NCM)?
- Calculation of NCM using the elk code.
- A special form of NCM ⇒ spin spirals (SS).

2 Excitation of the Magnetic Structure

- The low lying collective excitations (magnons)
- Different approaches to calculate magnons
- Magnons in the elk code (frozen magnon approach)
1 Magnetic Ground State Structure
 - What is collinear magnetism (CM) and non collinear magnetism (NCM) ?
 - Calculation of NCM using the elk code.
 - A special form of NCM ⇒ spin spirals (SS).

2 Excitation of the Magnetic Structure
 - The low lying collective excitations (magnons)
 - Different approaches to calculate magnons
 - Magnons in the elk code (frozen magnon approach)
1st Part

Non Collinear Ground States
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$m_0(r) = \sum_{\alpha\beta=1}^{2} \langle \Psi_0 | \hat{\Psi}_\alpha(r) \tilde{\sigma}_{\alpha\beta} \hat{\Psi}_\beta(r) | \Psi_0 \rangle.$$

The N particle problem can not be solved, so a different approach is needed to find the magnetic ground state of a system.
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$m_0(r) = \sum_{\alpha\beta=1}^{2} \langle \Psi_0 | \hat{\Psi}_\alpha^\dagger(r) \vec{\sigma}_{\alpha\beta} \hat{\Psi}_\beta(r) | \Psi_0 \rangle.$$

$m(r)=0$ everywhere (Non magnetic)

The N particle problem cannot be solved, so a different approach is needed to find the magnetic ground state of a system.
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$m_0(r) = \sum_{\alpha\beta=1}^{2} \langle \Psi_0 | \hat{\Psi}_\alpha^\dagger (r) \vec{\sigma}_{\alpha\beta} \hat{\Psi}_\beta (r) | \Psi_0 \rangle.$$

$m(r) = 0$ everywhere (Non magnetic)

The N particle problem can not be solved, so a different approach is needed to find the magnetic ground state of a system.
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$m_0(r) = \sum_{\alpha\beta=1}^{2} \langle \Psi_0 | \hat{\Psi}^\dagger_{\alpha}(r) \vec{\sigma}_{\alpha\beta} \hat{\Psi}_{\beta}(r) | \Psi_0 \rangle.$$

$m(r) = 0$ everywhere (Non magnetic)

$m(r) \parallel \mathbf{e}_z$ everywhere (Collinear system)

The N particle problem cannot be solved, so a different approach is needed to find the magnetic ground state of a system.
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$ m_0(r) = \sum_{\alpha\beta=1}^{2} \langle \Psi_0 | \hat{\Psi}_\alpha^\dagger(r) \vec{\sigma}_{\alpha\beta} \hat{\Psi}_\beta(r) | \Psi_0 \rangle. $$

$m(r)=0$ everywhere (Non magnetic)

$m(r) \parallel e_z$ everywhere (Collinear system)

The N particle problem cannot be solved, so a different approach is needed to find the magnetic ground state of a system.
Given a ground state $|\Psi_0\rangle$ of a system the ground state magnetic moment $m_0(r)$ is:

$$m_0(r) = \sum_{\alpha\beta=1}^{2} \left\langle \Psi_0 \left| \hat{\Psi}^\dagger_\alpha(r) \bar{\sigma}_{\alpha\beta} \hat{\Psi}_\beta(r) \right| \Psi_0 \right\rangle.$$

- $m(r)=0$ everywhere (Non magnetic)
- $m(r) \parallel e_z$ everywhere (Collinear system)
- No restriction to $m(r)$ (Non collinear system)

The N particle problem can **not be solved**, so a different approach is needed to find the magnetic ground state of a system.
Using Green’s function or density functional theory (DFT) one can find the $m_0(r)$ of a system.

Green’s Function

$$m_0(r) = \bar{\sigma}_{\alpha\beta} G_{\alpha\beta} (\mathbf{x}\mathbf{x}^+)$$

$$G(12) = G_0 (\mathbf{x}_1\mathbf{x}_2) \delta_{\alpha\beta}$$

$$+ \iiint d3d4 G_0 (13) M (34) G (42)$$

$$M_{\alpha\beta} = \begin{cases}
\delta_{\alpha\beta} M & \text{non magnetic solution} \\
\delta_{\alpha\beta} M_{\alpha} & \text{collinear } m_0 (r) \\
M_{\alpha\beta} & \text{non collinear } m_0 (r)
\end{cases}$$

The Kohn-Sham Scheme (DFT)

No external magnetic field.

$$m_0(r) = \sum_j^{\text{occ.}} \varphi_j^{KS*} \cdot \bar{\sigma}_{2\times2} \cdot \varphi_j^{KS}$$

$$\epsilon_j \varphi_j^{KS} = \left[\hat{h}_0 1_{2\times2} + v_{xc}^{2\times2} [\rho, m] (r) \right] \cdot \varphi_j^{KS}$$

$$\hat{h}_0 = \left(-\frac{\Delta r}{2} + v_0 (r) + v_H [\rho] (r) \right)$$

$$v_{xc}^{\alpha\beta} = \begin{cases}
\delta_{\alpha\beta} v_{xc} & \text{non magnetic solution} \\
\delta_{\alpha\beta} v_{xc} & \text{collinear } m_0 (r) \\
v_{xc} & \text{non collinear } m_0 (r)
\end{cases}$$

A non diagonal potential is necessary to get non collinear magnetism.
Using Green’s function or density functional theory (DFT) one can find the $m_0 (r)$ of a system.

Green’s Function

$$m_0 (r) = \bar{\sigma}_{\alpha\beta} G_{\alpha\beta} (xx^+)$$

$$G (12) = G_0 (x_1 x_2) \delta_{\alpha\beta}$$

$$+ \int \int d3d4 G_0 (13) M (34) G (42)$$

$$M_{\alpha\beta} = \begin{cases}
\delta_{\alpha\beta} M & \text{non magnetic solution} \\
\delta_{\alpha\beta} M_{\alpha} & \text{collinear } m_0 (r) \\
M_{\alpha\beta} & \text{non collinear } m_0 (r)
\end{cases}$$

The Kohn-Sham Scheme (DFT)

No external magnetic field.

$$m_0 (r) = \sum_{j}^{\text{occ.}} \varphi_j^{KS*} \cdot \bar{\sigma}_{2x2} \cdot \varphi_j^{KS}$$

$$\epsilon_j \varphi_j^{KS} = [\hat{h}_0 1_{2x2} + v_{xc}^{\rho, m} (r)] \cdot \varphi_j^{KS}$$

$$\hat{h}_0 = (-\frac{\Delta r}{2} + v_0 (r) + v_H [\rho] (r))$$

$$v_{xc}^{\alpha\beta} = \begin{cases}
\delta_{\alpha\beta} v_{xc} & \text{non magnetic solution} \\
\delta_{\alpha\beta} v_{xc} & \text{collinear } m_0 (r) \\
v_{xc} & \text{non collinear } m_0 (r)
\end{cases}$$

- A non diagonal potential is necessary to get non collinear magnetism.
Using Green’s function or density functional theory (DFT) one can find the \(m_0 (r) \) of a system.

A non diagonal potential is necessary to get non collinear magnetism.
The potential can be decomposed in a diagonal and off diagonal part.

Exchange Correlation Potential

\[
\nu_{\alpha\beta}^{xc} [\rho \mathbf{m}] (\mathbf{r}) = \delta_{\alpha\beta} \left[\nu_{xc} [\rho \mathbf{m}] (\mathbf{r}) + z_\alpha B_{xc}^z [\rho \mathbf{m}] (\mathbf{r}) \right] \quad \text{diagonal}
\]

\[
+ \sigma_x^{\alpha\beta} \cdot B_{xc}^x [\rho \mathbf{m}] (\mathbf{r}) + \sigma_y^{\alpha\beta} \cdot B_{xc}^y [\rho \mathbf{m}] (\mathbf{r}) \quad \text{off diagonal}
\]

\[
\nu_{xc} [\rho \mathbf{m}] (\mathbf{r}) := \frac{\delta E^{xc} [\rho \mathbf{m}]}{\delta \rho (\mathbf{r})} \quad \text{and} \quad B_{xc} [\rho \mathbf{m}] (\mathbf{r}) := \frac{\delta E^{xc} [\rho \mathbf{m}]}{\delta \mathbf{m} (\mathbf{r})}
\]

Functionals like LSDA and GGA depend only on \(\rho \) and \(m_z \).
The potential can be decomposed in a diagonal and off diagonal part.

Exchange Correlation Potential

$$v^{xc}_{\alpha\beta} [\rho \mathbf{m}] (\mathbf{r}) = \delta_{\alpha\beta} [v^{xc} [\rho \mathbf{m}] (\mathbf{r}) + z_{\alpha} B_{xc}^{z} [\rho \mathbf{m}] (\mathbf{r})] \quad \text{diagonal}$$

$$+ \sigma_{\alpha\beta}^{x} \cdot B_{xc}^{x} [\rho \mathbf{m}] (\mathbf{r}) + \sigma_{\alpha\beta}^{y} \cdot B_{xc}^{y} [\rho \mathbf{m}] (\mathbf{r}) \quad \text{off diagonal}$$

$$v^{xc} [\rho \mathbf{m}] (\mathbf{r}) := \frac{\delta E^{xc} [\rho \mathbf{m}]}{\delta \rho (\mathbf{r})} \quad \text{and} \quad B_{xc}^{z} [\rho \mathbf{m}] (\mathbf{r}) := \frac{\delta E^{xc} [\rho \mathbf{m}]}{\delta \mathbf{m} (\mathbf{r})}$$

Functionals like LSDA and GGA depend only on ρ and m_{z}.
To save these functionals you can use the Kübler trick:

1. Starting point is a $\rho_{2\times2}(r)$ density:
 $$\rho_{2\times2}(r) := \begin{pmatrix} \rho_{\uparrow\uparrow} & \rho_{\uparrow\downarrow} \\ \rho_{\downarrow\uparrow} & \rho_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} \rho + m_z & m_x - im_y \\ m_x + im_y & \rho - m_z \end{pmatrix}.$$

2. A unitary transformation is used to diagonalize $\rho_{2\times2}(r)$:
 $$\begin{pmatrix} \tilde{\rho}_\uparrow & 0 \\ 0 & \tilde{\rho}_\downarrow \end{pmatrix} = U(r) \rho_{2\times2}(r) U^\dagger(r) \text{ with } \tilde{\rho} = \tilde{\rho}_\uparrow + \tilde{\rho}_\downarrow \text{ and } \tilde{m}_z = \tilde{\rho}_\uparrow - \tilde{\rho}_\downarrow.$$

3. The $\tilde{\rho}$ and \tilde{m}_z are inserted in $\tilde{\nu}_{xc}^{\text{Dia}} [\tilde{\rho}\tilde{m}_z](r)$.

4. The inverse unitary transformation is used to transform the diagonal potential:
 $$\begin{pmatrix} \tilde{\nu}_{xc}^{\uparrow\uparrow} & \tilde{\nu}_{xc}^{\uparrow\downarrow} \\ \tilde{\nu}_{xc}^{\downarrow\uparrow} & \tilde{\nu}_{xc}^{\downarrow\downarrow} \end{pmatrix} = U^\dagger(r) \nu_{xc}^{\text{Dia}} [\tilde{\rho}\tilde{m}_z](r) U(r).$$

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
To save these functionals you can use the Kübler trick:

1. Starting point is a $\rho_{2 \times 2}(r)$ density:

$$
\rho_{2 \times 2}(r) := \begin{pmatrix}
\rho_{\uparrow\uparrow} & \rho_{\uparrow\downarrow} \\
\rho_{\downarrow\uparrow} & \rho_{\downarrow\downarrow}
\end{pmatrix} = \begin{pmatrix}
\rho + m_z & m_x - im_y \\
mx + im_y & \rho - m_z
\end{pmatrix}.
$$

2. A unitary transformation is used to diagonalize $\rho_{2 \times 2}(r)$:

$$
\begin{pmatrix}
\tilde{\rho}_{\uparrow} & 0 \\
0 & \tilde{\rho}_{\downarrow}
\end{pmatrix} = U(r) \rho_{2 \times 2}(r) U^\dagger(r) \quad \text{with} \quad \tilde{\rho} = \tilde{\rho}_{\uparrow} + \tilde{\rho}_{\downarrow}, \\
\tilde{m}_z = \tilde{\rho}_{\uparrow} - \tilde{\rho}_{\downarrow}.
$$

3. The $\tilde{\rho}$ and \tilde{m}_z are inserted in $v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r)$.

4. The inverse unitary transformation is used to transform the diagonal potential:

$$
\begin{pmatrix}
v_{xc}^{\uparrow\uparrow} \\
v_{xc}^{\uparrow\downarrow} \\
v_{xc}^{\downarrow\uparrow} \\
v_{xc}^{\downarrow\downarrow}
\end{pmatrix} = U^\dagger(r) v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r) U(r).
$$

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
To save these functionals you can use the Kübler trick:

1. Starting point is a $\rho_{2\times2}(r)$ density:

$$
\rho_{2\times2}(r) := \begin{pmatrix}
\rho^{↑↑} & \rho^{↑↓} \\
\rho^{↓↑} & \rho^{↓↓}
\end{pmatrix} = \begin{pmatrix}
\rho + m_z & m_x - im_y \\
m_x + im_y & \rho - m_z
\end{pmatrix}.
$$

2. A unitary transformation is used to diagonalize $\rho_{2\times2}(r)$:

$$
\begin{pmatrix}
\tilde{\rho}^{↑} & 0 \\
0 & \tilde{\rho}^{↓}
\end{pmatrix} = U(r) \rho_{2\times2}(r) U^\dagger(r) \quad \text{with} \quad \tilde{\rho} = \tilde{\rho}^{↑} + \tilde{\rho}^{↓}, \quad \tilde{m}_z = \tilde{\rho}^{↑} - \tilde{\rho}^{↓}.
$$

3. The $\tilde{\rho}$ and \tilde{m}_z are inserted in $\bar{v}_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r)$.

4. The inverse unitary transformation is used to transform the diagonal potential:

$$
\begin{pmatrix}
\bar{v}_{xc}^{↑↑} & \bar{v}_{xc}^{↑↓} \\
\bar{v}_{xc}^{↓↑} & \bar{v}_{xc}^{↓↓}
\end{pmatrix} = U^\dagger(r) \bar{v}_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r) U(r).
$$

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
To save these functionals you can use the Kübler trick:

1. **Starting point is a** $\rho_{2\times2}(\mathbf{r})$ **density:**

$$\rho_{2\times2}(\mathbf{r}) := \begin{pmatrix} \rho_{\uparrow\uparrow} & \rho_{\uparrow\downarrow} \\ \rho_{\downarrow\uparrow} & \rho_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} \rho + m_z & m_x - im_y \\ m_x + im_y & \rho - m_z \end{pmatrix}.$$

2. **A unitary transformation is used to diagonalize** $\rho_{2\times2}(\mathbf{r}):$

$$\begin{pmatrix} \tilde{\rho}_{\uparrow} & 0 \\ 0 & \tilde{\rho}_{\downarrow} \end{pmatrix} = U(\mathbf{r}) \rho_{2\times2}(\mathbf{r}) U^\dagger(\mathbf{r}) \quad \text{with} \quad \tilde{\rho} = \tilde{\rho}_{\uparrow} + \tilde{\rho}_{\downarrow}, \quad \tilde{m}_z = \tilde{\rho}_{\uparrow} - \tilde{\rho}_{\downarrow}.$$

3. **The** $\tilde{\rho}$ **and** \tilde{m}_z **are inserted in** $v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](\mathbf{r}).$

4. **The inverse unitary transformation is used to transform the diagonal potential:**

$$\begin{pmatrix} \tilde{v}_{xc}^{\uparrow\uparrow} & \tilde{v}_{xc}^{\uparrow\downarrow} \\ \tilde{v}_{xc}^{\downarrow\uparrow} & \tilde{v}_{xc}^{\downarrow\downarrow} \end{pmatrix} = U^\dagger(\mathbf{r}) v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](\mathbf{r}) U(\mathbf{r}).$$

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
To save these functionals you can use the Kübler trick:

1. Starting point is a $\rho_{2 \times 2} (r)$ density:
 \[
 \rho_{2 \times 2} (r) := \begin{pmatrix}
 \rho^{\uparrow\uparrow} & \rho^{\uparrow\downarrow} \\
 \rho^{\downarrow\uparrow} & \rho^{\downarrow\downarrow}
 \end{pmatrix} = \begin{pmatrix}
 \rho + m_z & m_x - im_y \\
 m_x + im_y & \rho - m_z
 \end{pmatrix}.
 \]

2. A unitary transformation is used to diagonalize $\rho_{2 \times 2} (r)$:
 \[
 \begin{pmatrix}
 \tilde{\rho}^{\uparrow} & 0 \\
 0 & \tilde{\rho}^{\downarrow}
 \end{pmatrix} = U (r) \rho_{2 \times 2} (r) U^\dagger (r)
 \quad \text{with} \quad
 \tilde{\rho} = \tilde{\rho}^{\uparrow} + \tilde{\rho}^{\downarrow},
 \tilde{m}_z = \tilde{\rho}^{\uparrow} - \tilde{\rho}^{\downarrow}.
 \]

3. The $\tilde{\rho}$ and \tilde{m}_z are inserted in $\tilde{v}^{\text{Dia}}_{\text{xc}} [\tilde{\rho} \tilde{m}_z] (r)$.

4. The inverse unitary transformation is used to transform the diagonal potential:
 \[
 \begin{pmatrix}
 \tilde{v}^{\uparrow\uparrow}_{\text{xc}} & \tilde{v}^{\uparrow\downarrow}_{\text{xc}} \\
 \tilde{v}^{\downarrow\uparrow}_{\text{xc}} & \tilde{v}^{\downarrow\downarrow}_{\text{xc}}
 \end{pmatrix} = U^\dagger (r) \tilde{v}^{\text{Dia}}_{\text{xc}} [\tilde{\rho} \tilde{m}_z] (r) U (r).
 \]

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
To save these functionals you can use the Kübler trick:

1. Starting point is a $\rho_{2\times2}(r)$ density:

$$\rho_{2\times2}(r) := \begin{pmatrix} \rho_{\uparrow\uparrow} & \rho_{\uparrow\downarrow} \\ \rho_{\downarrow\uparrow} & \rho_{\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} \rho + m_z & m_x - im_y \\ m_x + im_y & \rho - m_z \end{pmatrix}.$$

2. A unitary transformation is used to diagonalize $\rho_{2\times2}(r)$:

$$\begin{pmatrix} \tilde{\rho}_{\uparrow} & 0 \\ 0 & \tilde{\rho}_{\downarrow} \end{pmatrix} = U(r) \rho_{2\times2}(r) U^\dagger(r) \quad \text{with} \quad \tilde{\rho} = \tilde{\rho}_{\uparrow} + \tilde{\rho}_{\downarrow} \quad \tilde{m}_z = \tilde{\rho}_{\uparrow} - \tilde{\rho}_{\downarrow}.$$

3. The $\tilde{\rho}$ and \tilde{m}_z are inserted in $v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r)$.

4. The inverse unitary transformation is used to transform the diagonal potential:

$$\begin{pmatrix} \tilde{v}_{xc}^{\uparrow\uparrow} & \tilde{v}_{xc}^{\uparrow\downarrow} \\ \tilde{v}_{xc}^{\downarrow\uparrow} & \tilde{v}_{xc}^{\downarrow\downarrow} \end{pmatrix} = U^\dagger(r) v_{xc}^{\text{Dia}}[\tilde{\rho}\tilde{m}_z](r) U(r).$$

We have a non diagonal potential in hand, how NCM ground state calculations are practically done?
Properties of B_{xc}

\[
B_{xc}^{(n)} := B_{xc} \left[\rho^{(n-1)}, m^{(n-1)} \right] \parallel m^{(n-1)} \iff \text{Kübler trick} \quad (A)
\]

\[
B_{tot}^{(n)} := (B_{MT}^{\text{ext}} + B_{xc}^{(n)}) \parallel m^{(n)} \iff E = -m^{(n)} \cdot B_{tot}^{(n)} \quad (B)
\]

- **Starting point:** \((m^{(0)} = 0, \rho^{(0)} = \rho_{\text{Atom}}) \) with \(B_{xc} \left[\rho^{(0)}, m^{(0)} = 0 \right] = 0 \)
- An external field \(B_{MT}^{\text{ext}} \) is applied in the muffin tin (MT). (not physical!)
- The \(m^{(1)} \parallel B_{MT}^{\text{ext}} \) since \(B_{xc}^{(0)} = 0 \)
- This is conserved in the self consistent solution:

\[
m^{(n)} \parallel B_{MT}^{\text{ext}} \quad \xrightarrow{(A)} \quad B_{xc}^{(n+1)} \parallel m^{(n)}
\]

\[
m^{(n+1)} \parallel B_{MT}^{\text{ext}} \quad \xrightarrow{(B)} \quad m^{(n+1)} \parallel m^{(n)}
\]

\[
m^{(\text{final})} \parallel B_{MT}^{\text{ext}} \Rightarrow \text{The external fields can be used to guide the code towards a desired magnetic structure.}
\]
Properties of B_{xc}

\[B_{\text{xc}}^{(n)} := B_{\text{xc}} \left[\rho^{(n-1)}, m^{(n-1)} \right] \parallel m^{(n-1)} \quad \Leftrightarrow \quad \text{Kübler trick} \quad (A) \]

\[B_{\text{tot}}^{(n)} := (B_{\text{MT}}^{\text{ext}} + B_{\text{xc}}^{(n)}) \parallel m^{(n)} \quad \Leftrightarrow \quad E = -m^{(n)} \cdot B_{\text{tot}}^{(n)} \quad (B) \]

- Starting point: $(m^{(0)} = 0, \rho^{(0)} = \rho_{\text{Atom}})$ with $B_{\text{xc}} \left[\rho^{(0)}, m^{(0)} = 0 \right] = 0$
- An external field $B_{\text{MT}}^{\text{ext}}$ is applied in the muffin tin (MT). (not physical!)
- The $m^{(1)} \parallel B_{\text{MT}}^{\text{ext}}$ since $B_{\text{xc}}^{(0)} = 0$
- This is conserved in the self consistent solution:

\[
\begin{align*}
 m^{(n)} \parallel B_{\text{MT}}^{\text{ext}} \quad \xrightarrow{(A)} \quad & B_{\text{xc}}^{(n+1)} \parallel m^{(n)} \\
 m^{(n+1)} \parallel B_{\text{MT}}^{\text{ext}} \quad \xrightarrow{(B)} & m^{(n+1)} \parallel m^{(n)}.
\end{align*}
\]

$m^{(\text{final})} \parallel B_{\text{MT}}^{\text{ext}} \Rightarrow$ The external fields can be used to guide the code towards a desired magnetic structure.
Properties of B_{xc}

$$B_{\text{xc}}^{(n)} := B_{\text{xc}} \left[\rho^{(n-1)}, m^{(n-1)} \right] \parallel m^{(n-1)} \quad \Leftrightarrow \quad \text{Kübler trick} \quad (A)$$

$$B_{\text{tot}}^{(n)} := \left(B_{\text{MT}}^{\text{ext}} + B_{\text{xc}}^{(n)} \right) \parallel m^{(n)} \quad \Leftrightarrow \quad E = -m^{(n)} \cdot B_{\text{tot}}^{(n)} \quad (B)$$

- Starting point: $(m^{(0)} = 0, \rho^{(0)} = \rho_{\text{Atom}})$ with $B_{\text{xc}} \left[\rho^{(0)}, m^{(0)} = 0 \right] = 0$
- An external field $B_{\text{MT}}^{\text{ext}}$ is applied in the muffin tin (MT). (not physical!)
- The $m^{(1)} \parallel B_{\text{MT}}^{\text{ext}}$ since $B_{\text{xc}}^{(0)} = 0$
- This is conserved in the self consistent solution:

$$m^{(n)} \parallel B_{\text{MT}}^{\text{ext}} \quad \xrightarrow{(A)} \quad B_{\text{xc}}^{(n+1)} \parallel m^{(n)}$$

$$\downarrow^{(B)} \quad m^{(n+1)} \parallel B_{\text{MT}}^{\text{ext}} \quad \leftarrow \quad m^{(n+1)} \parallel m^{(n)}.$$

$m^{(\text{final})} \parallel B_{\text{MT}}^{\text{ext}} \Rightarrow$ The external fields can be used to guide the code towards a desired magnetic structure.
Properties of B_{xc}

\[
B_{xc}^{(n)} := B_{xc} \left[\rho^{(n-1)}, m^{(n-1)} \right] \parallel m^{(n-1)} \iff \text{Kübler trick} \quad (A)
\]

\[
B_{tot}^{(n)} := \left(B_{MT}^{ext} + B_{xc}^{(n)} \right) \parallel m^{(n)} \iff E = -m^{(n)} \cdot B_{tot}^{(n)} \quad (B)
\]

- **Starting point:** $(m^{(0)} = 0, \rho^{(0)} = \rho_{Atom})$ with $B_{xc} \left[\rho^{(0)}, m^{(0)} = 0 \right] = 0$
- An external field B_{MT}^{ext} is applied in the muffin tin (MT). *(not physical!)*
- The $m^{(1)} \parallel B_{MT}^{ext}$ since $B_{xc}^{(0)} = 0$

- This is conserved in the self consistent solution:

\[
m^{(n)} \parallel B_{MT}^{ext} \xrightarrow{(A)} B_{xc}^{(n+1)} \parallel m^{(n)} \xrightarrow{(B)} m^{(n+1)} \parallel B_{MT}^{ext} \leftarrow m^{(n+1)} \parallel m^{(n)}. \]

$m^{(final)} \parallel B_{MT}^{ext} \Rightarrow$ The external fields can be used to guide the code towards a desired magnetic structure.
Properties of B_{xc}

\[
B_{xc}^{(n)} := B_{xc} \left[\rho^{(n-1)}, m^{(n-1)} \right] \parallel m^{(n-1)} \quad \Leftrightarrow \quad \text{Kübler trick} \quad (A)
\]

\[
B_{tot}^{(n)} := (B_{ext}^{MT} + B_{xc}^{(n)}) \parallel m^{(n)} \quad \Leftrightarrow \quad E = -m^{(n)} \cdot B_{tot}^{(n)} \quad (B)
\]

- **Starting point:** $(m^{(0)} = 0, \rho^{(0)} = \rho_{\text{Atom}})$ with $B_{xc} \left[\rho^{(0)}, m^{(0)} = 0 \right] = 0$
- An external field B_{ext}^{MT} is applied in the muffin tin (MT). *not physical!*
- The $m^{(1)} \parallel B_{ext}^{MT}$ since $B_{xc}^{(0)} = 0$
- This is conserved in the self consistent solution:

\[
\begin{align*}
m^{(n)} \parallel B_{ext}^{MT} & \quad \overset{(A)}{\Rightarrow} \quad B_{xc}^{(n+1)} \parallel m^{(n)} \\
& \quad \downarrow^{(B)} \quad m^{(n+1)} \parallel B_{ext}^{MT} \quad \Leftrightarrow \quad m^{(n+1)} \parallel m^{(n)}.
\end{align*}
\]

$m^{(\text{final})} \parallel B_{ext}^{MT} \Rightarrow$ The external fields can be used to guide the code towards a desired magnetic structure.
Complicated magnetic structure \iff Larger unit cells

If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

- If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

If one gets $m^{(\text{final})}_{\text{MT}} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
- Complicated magnetic structure \iff Larger unit cells
- If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self-consistent cycles, it depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles depends on the topology of the energy surface.
Complicated magnetic structure ⇐⇒ Larger unit cells

If one gets $m_{MT}^{(final)} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
Complicated magnetic structure \iff Larger unit cells

If one gets $m_{MT}^{(\text{final})} \neq 0$ within the self consistent cycles, it depends on the topology of the energy surface.
If the system is pushed towards one magnetic structure
- It may converge in that structure
- or go back to the NM state

The ground state is $E_0 = \min\{\text{All structures}\}$

$E_0 \approx \min\{E_{\text{NC2}}, E_{\text{NC1}}, E_{\text{FM}}, E_{\text{AFM}}, E_{\text{NM}}\}$.
If the system is pushed towards one magnetic structure

- It may converge in that structure
- or go back to the NM state

The ground state is \(E_0 = \min\{\text{All structures}\} \)

\[
E_0 \approx \min\{E_{\text{NC}_2}, E_{\text{NC}_1}, E_{\text{FM}}, E_{\text{AFM}}, E_{\text{NM}}\}.
\]
If the system is pushed towards one magnetic structure

- It may converge in that structure
- or go back to the NM state

The ground state is \(E_0 = \min\{\text{All structures}\} \)

\[
E_0 \approx \min\{E_{\text{NC}_2}, E_{\text{NC}_1}, E_{\text{FM}}, E_{\text{AFM}}, E_{\text{NM}}\}.
\]
If the system is pushed towards one magnetic structure
- It may converge in that structure
- or go back to the NM state

The ground state is \(E_0 = \min\{\text{All structures}\} \)

\[
E_0 \approx \min\{E_{NC_2}, E_{NC_1}, E_{FM}, E_{AFM}, E_{NM}\}.
\]
If the system is pushed towards one magnetic structure
 - It may converge in that structure
 - or go back to the NM state

The ground state is \(E_0 = \min\{\text{All structures}\} \)
\[
E_0 \approx \min\{E_{\text{NC}_2}, E_{\text{NC}_1}, E_{\text{FM}}, E_{\text{AFM}}, E_{\text{NM}}\}.
\]
One type of non collinear magnetic structures are periodic structures, where the moment is rotated by an angle ϕ from cell to cell.

These periodic structures can be constructed in a more clever way, without using super cells.
One type of non collinear magnetic structures are periodic structures, where the moment is rotated by an angle ϕ from cell to cell.

These periodic structures can be constructed in a more clever way, without using super cells.
One type of non collinear magnetic structures are periodic structures, where the moment is rotated by an angel ϕ from cell to cell.

These periodic structures can be constructed in a more clever way, without using super cells.
One type of non collinear magnetic structures are periodic structures, where the moment is rotated by an angle ϕ from cell to cell.

These periodic structures can be constructed in a more clever way, without using super cells.
Ground State Calculation

Excitations

Definition of CM and NCM

NC Magnetic Ground State Calculation

The Spin Spiral Ansatz

Summary - Non Collinear Magnetic Ground States

Bloch State

$$\vec{\phi}_{nk}(r) = \begin{pmatrix} u_{nk}(1, r) e^{ikr} \\ u_{nk}(2, r) e^{ikr} \end{pmatrix}$$

$$u_{nk}(\alpha, r + T) = u_{nk}(\alpha, r)$$

$$\Rightarrow m_0(r + T) = m_0(r)$$

Spin Spiral Ansatz

$$\vec{\phi}_{nk}(r) = \begin{pmatrix} u_{nk}(1, r) e^{i(k - \frac{q}{2})r} \\ u_{nk}(2, r) e^{i(k + \frac{q}{2})r} \end{pmatrix}$$

Moment is rotating with

$$\phi = q \cdot r.$$
Bloch State

\[
\tilde{\varphi}_{nk}(r) = \begin{pmatrix}
 u_{nk}(1, r) e^{i k r} \\
 u_{nk}(2, r) e^{i k r}
\end{pmatrix}
\]

\[
u_{nk}(\alpha, r + T) = u_{nk}(\alpha, r)
\]

\[
\Rightarrow m_0(r + T) = m_0(r)
\]

Spin Spiral Ansatz

\[
\tilde{\varphi}_{nk}(r) = \begin{pmatrix}
 u_{nk}(1, r) e^{i(k - \frac{q}{2})r} \\
 u_{nk}(2, r) e^{i(k + \frac{q}{2})r}
\end{pmatrix}
\]

Moment is rotating with \(\phi = q \cdot r\).

Spin Spiral - Magnetic Moment

\[
m_q(r) = M(\theta_0) \begin{pmatrix}
 \cos(\phi_0 + q \cdot r) \sin(\theta_0) \\
 \sin(\phi_0 + q \cdot r) \sin(\theta_0) \\
 \cos(\theta_0)
\end{pmatrix}
\]
The angles θ_0 and ϕ_0 are controlled via B^ext_{MT}.

Periodic magnetic structures are constructed using a planar spiral:

- θ_0 is set to 90°
- ϕ_0 is set to 0.
The angles θ_0 and ϕ_0 are controlled via $B_{\text{ext}}^{\text{MT}}$.

Periodic magnetic structures are constructed using a planar spiral:

- θ_0 is set to 90°
- ϕ_0 is set to 0.

Form of Magnetic Moment

$$m_q(r) = M(\theta_0) \begin{pmatrix} \cos(\phi_0 + q \cdot r) \sin(\theta_0) \\ \sin(\phi_0 + q \cdot r) \sin(\theta_0) \\ \cos(\theta_0) \end{pmatrix}$$
The angles θ_0 and ϕ_0 are controlled via external magnetic fields.

Periodic magnetic structure are constructed by a planar spiral:
- θ_0 is set to 90°
- ϕ_0 is set to 0.

The spiral vector is given by $q = \sum_{i=1}^{3} \frac{m_i}{n_i} a_i$
- Commensurate spiral if $m_i = \{0, 1\}$
- Incommensurate spiral elsewise.

Form of Magnetic Moment

$$m_q(r) = M \begin{pmatrix} \cos(q \cdot r) \\ \sin(q \cdot r) \\ 0 \end{pmatrix}$$
The angles θ_0 and ϕ_0 are controlled via external magnetic fields.

Periodic magnetic structure are constructed by a planar spiral:
- θ_0 is set to 90°
- ϕ_0 is set to 0.

The spiral vector is given by $\mathbf{q} = \sum_{i=1}^{3} \frac{m_i}{n_i} \mathbf{a}_i$
- Commensurate spiral if $m_i = \{0, 1\}$
- Incommensurate spiral elsewise.

Form of Magnetic Moment

$$m_q (r) = M \begin{pmatrix} \cos (\mathbf{q} \cdot \mathbf{r}) \\ \sin (\mathbf{q} \cdot \mathbf{r}) \\ 0 \end{pmatrix}$$
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
The Ansatz reduces the computational work essentially compared to the super cells.
For some materials DFT predicts an incommensurate spiral to be lower in energy than the AFM state.

- High q resolution required to distinguish from AFM
- Tiny ΔE calls for very low temperatures.
For some materials DFT predicts an incommensurate spiral to be lower in energy than the AFM state.

Experimental observation difficult\(^1\):

- High \(q\) resolution required to distinguish from AFM
- Tiny \(\Delta E\) calls for very low temperatures.

For some materials DFT predicts an incommensurate spiral to be lower in energy than the AFM state.

Experimental observation difficult\(^1\):

- High \(q \) resolution required to distinguish from AFM
- Tiny \(\Delta E \) calls for very low temperatures.

Small external fields in the muffin tins $\mathbf{B}^{\text{ext}}_{\text{MT}}$ are used to push the system towards a specific magnetic structure. Depending on the topology of the energy surface the moment converges to a finite value. The possible number of magnetic structures is infinite and only some structures can be tested. Periodic magnetic structures are constructed efficiently using a planar Spin Spiral (SS).
Small external fields in the muffin tins $B_{\text{MT}}^{\text{ext}}$ are used to push the system towards a specific magnetic structure. Depending on the topology of the energy surface the moment converges to a finite value. The possible number of magnetic structures is infinite and only some structures can be tested. Periodic magnetic structures are constructed efficiently using a planar Spin Spiral (SS).
• Small external fields in the muffin tins $B_{\text{ext}}^{\text{MT}}$ are used to push the system towards a specific magnetic structure.

• Depending on the topology of the energy surface the moment converges to a finite value.

• The possible number of magnetic structures is infinite and only some structures can be tested.

• Periodic magnetic structures are constructed efficiently using a planar Spin Spiral (SS).
Small external fields in the muffin tins B^ext_{MT} are used to push the system towards a specific magnetic structure.

Depending on the topology of the energy surface the moment converges to a finite value.

The possible number of magnetic structures is infinite and only some structures can be tested.

Periodic magnetic structures are constructed efficiently using a planar Spin Spiral (SS).
Small external fields in the muffin tins B^ext_{MT} are used to push the system towards a specific magnetic structure. Depending on the topology of the energy surface the moment converges to a finite value. The possible number of magnetic structures is infinite and only some structures can be tested. Periodic magnetic structures are constructed efficiently using a planar Spin Spiral (SS).
2nd Part
Magnetic Excitations
Spin waves are excitations **on top** of a (collinear) magnetic ordering.

The moments are distorted by small θ and start to turn with $\phi = q \cdot r$ from cell to cell.
Spin waves are excitations on top of a (collinear) magnetic ordering. The moments are distorted by small θ and start to turn with $\phi = q \cdot r$ from cell to cell.
Spin waves are excitations on top of a (collinear) magnetic ordering.

The moments are distorted by small θ and start to turn with $\phi = q \cdot r$ from cell to cell.
- Spin waves are excitations on top of a (collinear) magnetic ordering.
- The moments are distorted by small θ and start to turn with $\phi = \mathbf{q} \cdot \mathbf{r}$ from cell to cell.
Spin waves are excitations on top of a (collinear) magnetic ordering.

The moments are distorted by small θ and start to turn with $\phi = \mathbf{q} \cdot \mathbf{r}$ from cell to cell.
The quantized modes of the spin waves are called "magnons".

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few} \ 100 \ \text{meV}$ and $\tau_q \in [10^{-4} \text{s}, 10^{-14} \text{s}]$.

A Magnon ranges over the whole crystal
⇒ "Collective excitation"

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
⇒ "Low lying excitation"

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few 100 meV}$ and $\tau_q \in [10^{-4}\text{s}, 10^{-14}\text{s}]$.

A Magnon ranges over the whole crystal
⇒ “Collective excitation”

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called "magnons".

Magnons are bosonic quasi-particles (QP) carrying $1 \mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few } 100 \text{ meV}$ and $\tau_q \in [10^{-4} \text{s}, 10^{-14} \text{s}]$.

A Magnon ranges over the whole crystal
⇒ "Collective excitation"

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
⇒ "Low lying excitation"

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
• The quantized modes of the spin waves are called “magnons”.

• Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

• The energies and lifetimes are $\omega_q^{\text{Max}} \approx$ few 100 meV and $\tau_q \in [10^{-4}\text{s}, 10^{-14}\text{s}]$.

• A Magnon ranges over the whole crystal
 \Rightarrow “Collective excitation”

• Dispersion $\lim_{q\to0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q\to0} \omega_q^{\text{AFM}} \propto |q|$
 \Rightarrow “Low lying excitation”

• Two approaches to obtain magnon spectra:
 • Linear Response Theory (LRT)
 • Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few 100 meV}$ and $\tau_q \in [10^{-4}s, 10^{-14}s]$.

A Magnon ranges over the whole crystal
⇒ “Collective excitation”

Dispersion $\lim_{q \to 0} \omega_q^{FM} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{AFM} \propto |q|$
⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few } 100 \text{ meV}$ and $\tau_q \in [10^{-4}s, 10^{-14}s]$.

A Magnon ranges over the whole crystal ⇒ “Collective excitation”

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx$ few 100 meV and $\tau_q \in [10^{-4}\text{s}, 10^{-14}\text{s}]$.

A Magnon ranges over the whole crystal
\Rightarrow “Collective excitation”

Dispersion \[\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2 \text{ and } \lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q| \]
\Rightarrow “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1 \mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few } 100 \text{ meV}$ and $\tau_q \in [10^{-4}\text{s}, 10^{-14}\text{s}]$.

A Magnon ranges over the whole crystal
⇒ “Collective excitation”

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega_q^{\text{Max}} \approx \text{few } 100 \text{ meV}$ and $\tau_q \in [10^{-4} \text{s}, 10^{-14} \text{s}]$.

A Magnon ranges over the whole crystal
\[\Rightarrow \text{“Collective excitation”} \]

Dispersion $\lim_{q \to 0} \omega_q^{\text{FM}} \propto |q|^2$ and $\lim_{q \to 0} \omega_q^{\text{AFM}} \propto |q|$
\[\Rightarrow \text{“Low lying excitation”} \]

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying $1\mu_B$.

The energies and lifetimes are $\omega^\text{Max}_q \approx \text{few 100 meV}$ and $\tau_q \in [10^{-4}\,\text{s}, 10^{-14}\,\text{s}]$.

A Magnon ranges over the whole crystal
⇒ “Collective excitation”

Dispersion $\lim_{q\to 0} \omega^\text{FM}_q \propto |q|^2$ and $\lim_{q\to 0} \omega^\text{AFM}_q \propto |q|$ ⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:
- Linear Response Theory (LRT)
- Frozen magnon calculations.
The central quantity in LRT is the response function χ.

The $\text{Im} [\chi^{+-}(q\omega)]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$

χ with Green’s functions

\[\chi = P + P v \chi \]

χ with DFT

\[\chi = \chi_{KS} + \chi_{KS} (v + f_{xc}) \chi \]

\[\chi_{KS}^{ij} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma^i_{\alpha\beta} \sigma^j_{\gamma\delta}}{\omega + \epsilon_n - \epsilon_m + i0^+} \times \]

\[\varphi^*_{n}(\alpha r_1) \varphi^*_{m}(\gamma r_2) \varphi_n(\delta r_2) \varphi_m(\beta r_1) \]

\[f_{xc}^{ij} = \frac{\delta^2 E_{xc}[\rho m]}{\delta \rho_i \delta \rho_j} \]
The central quantity in LRT is the response function χ.

The $\text{Im} [\chi^{+-} (q\omega)]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$

χ with Green's functions

$$\chi = P + P\nu \chi$$

χ with DFT

$$\chi = \chi_{\text{KS}} + \chi_{\text{KS}} (\nu + f_{\text{xc}}) \chi$$

$$\chi^{ij}_{\text{KS}} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma_\alpha^i \sigma_\beta^j \sigma_\gamma^i \sigma_\delta^j}{\omega + \epsilon_{n} - \epsilon_{m} + i0^+} \times$$

$$\varphi_{n}^* (\alpha r_1) \varphi_{m}^* (\gamma r_2) \varphi_{n} (\delta r_2) \varphi_{m} (\beta r_1)$$

$$f^{ij}_{\text{xc}} = \frac{\delta^2 E_{\text{xc}} [\rho m]}{\delta \rho_i \delta \rho_j}$$
The central quantity in LRT is the response function χ.

The $\text{Im} [\chi^{+-} (q\omega)]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$.

χ with Green’s functions

$$\chi = P + P v \chi$$

χ with DFT

$$\chi = \chi_{KS} + \chi_{KS} (v + f_{xc}) \chi$$

$$\chi_{KS}^{ij} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma^l_{\alpha\beta} \sigma^j_{\gamma\delta}}{\omega + \epsilon_n - \epsilon_m + i0^+} \times$$

$$\varphi_n^* (\alpha r_1) \varphi_m^* (\gamma r_2) \varphi_n (\delta r_2) \varphi_m (\beta r_1)$$

$$f_{xc}^{ij} = \frac{\delta^2 E_{xc} [\rho_m]}{\delta \rho_i \delta \rho_j}$$
The central quantity in LRT is the response function χ.

The $\text{Im} [\chi^{+-} (q \omega)]$ contains the information about the magnons:
- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$.

χ with Green’s functions

$$\chi = P + P v \chi$$

χ with DFT

$$\chi = \chi_{KS} + \chi_{KS} (v + f_{xc}) \chi$$

$$\chi^{ij}_{KS} = \sum_{\alpha \beta \gamma \delta} \sum_{mn} \frac{[n_n - n_m] \sigma^i_\alpha \sigma^j_\beta}{\omega + \epsilon_n - \epsilon_m + i0^+} \times$$

$$\varphi_n^* (\alpha r_1) \varphi_m^* (\gamma r_2) \varphi_n (\delta r_2) \varphi_m (\beta r_1)$$

$$f^{ij}_{xc} = \frac{\delta^2 E_{xc} [\rho m]}{\delta \rho_i \delta \rho_j}$$
The central quantity in LRT is the response function χ. The $\text{Im} \left[\chi^{+-} (q\omega) \right]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$.

χ with Green’s functions

$$\chi = P + P\nu\chi$$

χ with DFT

$$\chi = \chi_{KS} + \chi_{KS} (\nu + f_{xc}) \chi$$

$$\chi_{KS}^{ij} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma_{\alpha\beta}^i \sigma_{\gamma\delta}^j}{\omega + \epsilon_n - \epsilon_m + i0^+} \times$$

$$\varphi^*_{n}(\alpha r_1) \varphi^*_{m}(\gamma r_2) \varphi_{n}(\delta r_2) \varphi_{m}(\beta r_1)$$

$$f_{xc}^{ij} = \frac{\delta^2 E_{xc}[\rho_{pm}]}{\delta \rho_i \delta \rho_j}$$
The central quantity in LRT is the response function χ.

The $\text{Im}[\chi^{+-}(q\omega)]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$.

χ with Green’s functions

$$\chi = P + P \nu \chi$$

χ with DFT

$$\chi = \chi_{\text{KS}} + \chi_{\text{KS}} (\nu + f_{\text{xc}}) \chi$$

$$\chi_{\text{KS}}^{ij} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma^l_{\alpha\beta} \sigma^l_{\gamma\delta}}{\omega + \epsilon_n - \epsilon_m + i0^+} \times$$

$$\varphi_n^*(\alpha r_1) \varphi_m^*(\gamma r_2) \varphi_n (\delta r_2) \varphi_m (\beta r_1)$$

$$f_{\text{xc}}^{ij} = \frac{\delta^2 E_{\text{xc}} [\rho_m]}{\delta \rho_i \delta \rho_j}$$
The central quantity in LRT is the response function χ. The $\text{Im} \left[\chi^{+-} (q \omega) \right]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$

χ with Green’s functions

$\chi = P + P v \chi$

$P \begin{align*}
&= \begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3} \\
\text{Diagram 4} \\
\text{...}
\end{array}
\end{align*}$

χ with DFT

$\chi = \chi_{KS} + \chi_{KS} (v + f_{xc}) \chi$

$\chi_{KS}^{ij} = \sum_{\alpha \beta \gamma \delta} \sum_{mn} \frac{[n_n - n_m] \sigma^i_{\alpha \beta} \sigma^j_{\gamma \delta}}{\omega + \epsilon_n - \epsilon_m + i0^+} \times
\varphi_n^*(\alpha r_1) \varphi_m^*(\gamma r_2) \varphi_n(\delta r_2) \varphi_m(\beta r_1)$

$f_{xc}^{ij} = \frac{\delta^2 E_{xc}[\rho m]}{\delta \rho_i \delta \rho_j}$
The central quantity in LRT is the response function χ.

The $\text{Im} \left[\chi^{+-} (q\omega) \right]$ contains the information about the magnons:

- Position of a pole $\rightarrow \omega_q$
- Width of the pole $\propto \frac{1}{\tau_q}$

χ with Green’s functions

$$\chi = P + P v \chi$$

χ with DFT

$$\chi = \chi_{KS} + \chi_{KS} (v + f_{xc}) \chi$$

$$\chi_{ij}^{ks} = \sum_{\alpha\beta\gamma\delta} \sum_{mn} \frac{[n_n - n_m] \sigma_i^{\alpha\beta} \sigma_j^{\gamma\delta}}{\omega + \epsilon_n - \epsilon_m + i0^+} \times$$

$$\varphi_n (\alpha r_1) \varphi_m^*(\gamma r_2) \varphi_n (\delta \rho_2) \varphi_m (\beta r_1)$$

$$f_{xc}^{ij} = \frac{\delta^2 E_{xc} [\rho \rho_m]}{\delta \rho_i \delta \rho_j}$$
- The calculation of χ^{+-} is not yet in the elk code. 😊
 But it is quite high on Sangeeta’s agenda. 😊

- Nevertheless it is possible with other codes.

- But to some extent magnons can be already calculated with the “frozen magnon approach”.
The calculation of χ^{+-} is not yet in the elk code. 😊
But it is quite high on Sangeeta's agenda. 😊

Nevertheless it is possible with other codes.

But to some extent magnons can be already calculated with the "frozen magnon approach".
The calculation of χ^{+-} is not yet in the elk code. 😊
But it is quite high on Sangeeta's agenda. 😊

Nevertheless it is possible with other codes.

But to some extent magnons can be already calculated with the "frozen magnon approach".
The calculation of χ^{+-} is not yet in the elk code. 😞 But it is quite high on Sangeeta's agenda. 😊

Nevertheless it is possible with other codes.

But to some extend magnons can be already calculated with the "frozen magnon approach".

![3D plot of Imχ(qω)]
Starting point is the Heisenberg Hamiltonian:

$$\hat{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \hat{M}_i(t) \cdot \hat{M}_j(t).$$

The equations of motion reads:

$$\dot{\hat{M}}_j(t) = [\hat{H}, \hat{M}_j] (t) = \sum_{i(\neq j)} J_{ij} \left(\hat{M}_j(t) \times \hat{M}_i(t) \right)$$

$$\langle \dot{\hat{M}}_j(t) \rangle \approx \sum_{i(\neq j)} J_{ij} \left(\langle \hat{M}_j(t) \rangle \times \langle \hat{M}_i(t) \rangle \right).$$

The times scales of electron hopping (fast) and the magnon movement (slow) justifies an adiabatic approximation:

$$\langle \hat{M}_j(t) \rangle \approx \langle \hat{M}_j \rangle (t).$$
Starting point is the Heisenberg Hamiltonian:

$$\hat{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \hat{\mathbf{M}}_i(t) \cdot \hat{\mathbf{M}}_j(t).$$

The equations of motion reads:

$$\dot{\hat{\mathbf{M}}}_j(t) = \left[\hat{H}, \hat{\mathbf{M}}_j \right](t) = \sum_{i(\neq j)} J_{ij} \left(\hat{\mathbf{M}}_j(t) \times \hat{\mathbf{M}}_i(t) \right)$$

$$\langle \dot{\hat{\mathbf{M}}}_j(t) \rangle \approx \sum_{i(\neq j)} J_{ij} \left(\langle \hat{\mathbf{M}}_j(t) \rangle \times \langle \hat{\mathbf{M}}_i(t) \rangle \right).$$

The times scales of electron hopping (fast) and the magnon movement (slow) justifies an adiabatic approximation:

$$\langle \hat{\mathbf{M}}_j(t) \rangle \approx \langle \hat{\mathbf{M}}_j \rangle(t).$$
• Starting point is the Heisenberg Hamiltonian:

\[\hat{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \hat{M}_i(t) \cdot \hat{M}_j(t). \]

• The equations of motion reads:

\[\dot{\hat{M}}_j(t) = \left[\hat{H}, \hat{M}_j \right](t) = \sum_{i(\neq j)} J_{ij} \left(\hat{M}_j(t) \times \hat{M}_i(t) \right) \]

\[\left\langle \hat{M}_j(t) \right\rangle \approx \sum_{i(\neq j)} J_{ij} \left(\left\langle \hat{M}_j(t) \right\rangle \times \left\langle \hat{M}_i(t) \right\rangle \right). \]

• The times scales of electron hopping (fast) and the magnon movement (slow) justifies an adiabatic approximation:

\[\left\langle \hat{M}_j(t) \right\rangle \approx \left\langle \hat{M}_j \right\rangle(t). \]
Starting point is the Heisenberg Hamiltonian:

\[\hat{H} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \hat{\mathbf{M}}_i(t) \cdot \hat{\mathbf{M}}_j(t). \]

The equations of motion reads:

\[\dot{\hat{\mathbf{M}}}_j(t) = \left[\hat{H}, \hat{\mathbf{M}}_j \right](t) = \sum_{i(\neq j)} J_{ij} \left(\hat{\mathbf{M}}_j(t) \times \hat{\mathbf{M}}_i(t) \right) \]

\[\langle \hat{\mathbf{M}}_j(t) \rangle \approx \sum_{i(\neq j)} J_{ij} \left(\langle \hat{\mathbf{M}}_j(t) \rangle \times \langle \hat{\mathbf{M}}_i(t) \rangle \right). \]

The times scales of electron hopping (fast) and the magnon movement (slow) justifies an adiabatic approximation:

\[\langle \hat{\mathbf{M}}_j(t) \rangle \approx \langle \hat{\mathbf{M}}_j \rangle(t). \]
Spin Wave Moment

\[
\langle \hat{M}_i \rangle (t) := M_i(t) = M_i \left(\begin{array}{c}
\cos (\phi_i(t)) \sin (\theta_i) \\
\sin (\phi_i(t)) \sin (\theta_i) \\
\cos \theta_i
\end{array} \right)
\]

\[
\theta_i \approx 0
\]

The angle \(\phi \) is time dependent:

\[
\phi_i(t) = \phi_0 + q \cdot R_i + \omega_q t.
\]

- \(M_i(t) \) has no damping, so the magnons have infinite lifetime.
- Insert \(M_i(t) \) in the equation of motion, linearize \(\sin \theta_i \approx \theta_i \) to get an eigen value problem in real space:

\[
\theta_k \omega_q = \sum_{i(\neq k)} J_{ki} (\delta_{ik} - \cos (\phi_k - \phi_i)) M_i \theta_i.
\]
Spin Wave Moment

\[\langle \hat{M}_i \rangle (t) := M_i(t) = M_i \begin{pmatrix} \cos (\phi_i(t)) \sin (\theta_i) \\ \sin (\phi_i(t)) \sin (\theta_i) \\ \cos \theta_i \end{pmatrix} \]

\[\theta_i \approx 0 \]

The angle \(\phi \) is time dependent:

\[\phi_i(t) = \phi_0 + \mathbf{q} \cdot \mathbf{R}_i + \omega_q t. \]

- \(M_i(t) \) has no damping, so the magnons have infinite lifetime.
- Insert \(M_i(t) \) in the equation of motion, linearize \(\sin \theta_i \approx \theta_i \) to get an eigen value problem in real space:

\[\theta_k \omega_q = \sum_{i(\neq k)} J_{ki} (\delta_{ik} - \cos (\phi_k - \phi_i)) M_i \theta_i. \]
Spin Wave Moment

\[\langle \hat{M}_i \rangle (t) := M_i(t) = M_i \begin{pmatrix} \cos (\phi_i(t)) \sin (\theta_i) \\ \sin (\phi_i(t)) \sin (\theta_i) \\ \cos \theta_i \end{pmatrix} \]

\[\theta_i \approx 0 \]

The angle \(\phi \) is time dependent:

\[\phi_i(t) = \phi_0 + \mathbf{q} \cdot \mathbf{R}_i + \omega_q t. \]

- \(M_i(t) \) has no damping, so the magnons have infinite lifetime.
- Insert \(M_i(t) \) in the equation of motion, linearize \(\sin \theta_i \approx \theta_i \) to get an eigen value problem in real space:

\[\theta_k \omega_q = \sum_{i(\neq k)} J_{ki} (\delta_{ik} - \cos (\phi_k - \phi_i)) M_i \theta_i. \]
Spin Wave Moment

\[\langle \hat{M}_i \rangle (t) := M_i (t) = M_i \begin{pmatrix} \cos (\phi_i (t)) \sin (\theta_i) \\ \sin (\phi_i (t)) \sin (\theta_i) \\ \cos \theta_i \end{pmatrix} \]

\(\theta_i \approx 0 \)

The angle \(\phi \) is time dependent:

\[\phi_i (t) = \phi_0 + q \cdot R_i + \omega_q t. \]

- \(M_i (t) \) has no damping, so the magnons have infinite lifetime.
- Insert \(M_i (t) \) in the equation of motion, linearize \(\sin \theta_i \approx \theta_i \) to get an eigen value problem in real space:

\[\theta_k \omega_q = \sum_{i(\neq k)} J_{ki} (\delta_{ik} - \cos (\phi_k - \phi_i)) M_i \theta_i. \]
Spin Wave Moment

\[
\langle \hat{M}_i \rangle (t) := M_i (t) = M_i \begin{pmatrix} \cos (\phi_i (t)) \sin (\theta_i) \\ \sin (\phi_i (t)) \sin (\theta_i) \\ \cos \theta_i \end{pmatrix}
\]

\[\theta_i \approx 0\]

The angle \(\phi\) is time dependent:

\[\phi_i (t) = \phi_0 + q \cdot R_i + \omega_q t.\]

- \(M_i (t)\) has no damping, so the magnons have infinite lifetime.
- Insert \(M_i (t)\) in the equation of motion, linearize \(\sin \theta_i \approx \theta_i\) to get an eigen value problem in real space:

\[
\theta_k \omega_q = \sum_{i(\neq k)} J_{ki} (\delta_{ik} - \cos (\phi_k - \phi_i)) M_i \theta_i.
\]
The eigen value problem is transformed to inverse space:

$$\sqrt{M_\mu} \theta_\mu \omega_q = \sum_\nu \sqrt{M_\mu M_\nu} \text{Re} \left[J_q^{\mu \nu} \right] \sqrt{M_\nu} \theta_\nu.$$

$$\Rightarrow 0 = \det \left[\delta_{\mu \nu} \omega_q - \sqrt{M_\mu M_\nu} \text{Re} \left[J_q^{\mu \nu} \right] \right]$$

The indices μ and ν run over all m_{MT} in the unit cell.

The matrix $J_q^{\mu \nu}$ is related to the energy surface $E_q (\{\theta_\lambda\}):$

$$\text{Re} \left[J_q^{\mu \nu} \right] = \frac{1}{M_\mu M_\nu} \left. \frac{\partial^2 E_q (\{\theta_\lambda\})}{\partial \theta_\mu \partial \theta_\nu} \right|_{\{\theta_\lambda\}=0}.$$

The $E_q (\{\theta_\lambda\})$ can be obtained using static SS calculations with fixed $\{\theta_\lambda\}$ and q.

The Frozen Magnon Approach
The eigen value problem is transformed to inverse space:

$$\sqrt{M_\mu} \theta_\mu \omega_\mathbf{q} = \sum_\nu \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^{\mathbf{q}}_{\mu \nu} \right] \sqrt{M_\nu} \theta_\nu. $$

$$\Rightarrow 0 = \det \left[\delta_{\mu \nu} \omega_\mathbf{q} - \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^{\mathbf{q}}_{\mu \nu} \right] \right]$$

The indices μ and ν run over all \mathbf{m}_{MT} in the unit cell.

The matrix $\tilde{J}^{\mathbf{q}}_{\mu \nu}$ is related to the energy surface $E_\mathbf{q} (\{\theta_\lambda\})$:

$$\text{Re} \left[\tilde{J}^{\mathbf{q}}_{\mu \nu} \right] = \frac{1}{M_\mu M_\nu} \left. \frac{\partial^2 E_\mathbf{q} (\{\theta_\lambda\})}{\partial \theta_\mu \partial \theta_\nu} \right|_{\{\theta_\lambda\} = 0}. $$

The $E_\mathbf{q} (\{\theta_\lambda\})$ can be obtained using static SS calculations with fixed $\{\theta_\lambda\}$ and \mathbf{q}.
The eigen value problem is transformed to inverse space:

\[\sqrt{M_\mu} \theta_\mu \omega_q = \sum_\nu \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^{q}_{\mu\nu} \right] \sqrt{M_\nu} \theta_\nu. \]

\[\Rightarrow 0 = \det \left[\delta_{\mu\nu} \omega_q - \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^{q}_{\mu\nu} \right] \right] \]

The indices \(\mu \) and \(\nu \) run over all \(m_{MT} \) in the unit cell.

The matrix \(\tilde{J}^{q}_{\mu\nu} \) is related to the energy surface \(E_q (\{\theta_\lambda\}) \):

\[\text{Re} \left[\tilde{J}^{q}_{\mu\nu} \right] = \frac{1}{M_\mu M_\nu} \frac{\partial^2 E_q (\{\theta_\lambda\})}{\partial \theta_\mu \partial \theta_\nu} \bigg|_{\{\theta_\lambda\}=0}. \]

The \(E_q (\{\theta_\lambda\}) \) can be obtained using static SS calculations with fixed \(\{\theta_\lambda\} \) and \(q \).
The eigen value problem is transformed to inverse space:

$$\sqrt{M_\mu \theta_\mu} \omega_q = \sum_\nu \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^q_{\mu \nu} \right] \sqrt{M_\nu \theta_\nu}. $$

$$\Rightarrow 0 = \det \left[\delta_{\mu \nu} \omega_q - \sqrt{M_\mu M_\nu} \text{Re} \left[\tilde{J}^q_{\mu \nu} \right] \right]$$

The indices μ and ν run over all m_{MT} in the unit cell.

The matrix $\tilde{J}^q_{\mu \nu}$ is related to the energy surface $E_q (\{\theta_\lambda\})$:

$$\text{Re} \left[\tilde{J}^q_{\mu \nu} \right] = \frac{1}{M_\mu M_\nu} \left. \frac{\partial^2 E_q (\{\theta_\lambda\})}{\partial \theta_\mu \partial \theta_\nu} \right|_{\{\theta_\lambda\}=0}.$$
The Energy $E_q(\theta)$ of an spin spiral state with one magnetic atom per unit cell (for any θ):

$$E_q(\theta) = \frac{1}{2} \text{Re} \left[\tilde{J}^0 \right] M^2(\theta) + \frac{1}{2} \text{Re} \left[\tilde{J}_q \right] M^2(\theta) \sin^2(\theta).$$

For small angles $M(\theta) \approx M(\theta = 0) = M_0$ and the eigenvalue equation is also valid:

$$E_q(\theta)^{\text{small}} \approx E_{FM} + \frac{1}{2} \text{Re} \left[\tilde{J}_q \right] M_0^2 \sin^2(\theta)$$

$$\omega_q = M_0 \text{Re} \left[\tilde{J}_q \right].$$

Magnon Energies for one Atom per Unit Cell

$$\omega_q = \lim_{\theta \to 0} \frac{2 \left[E_q(\theta) - E_{FM} \right]}{M_0 \sin^2(\theta)}$$

The largest angles for which this equation holds depends on the material.
The Energy $E_q (\theta)$ of an spin spiral state with one magnetic atom per unit cell (for any θ):

$$E_q (\theta) = \frac{1}{2} \text{Re} \left[\tilde{\mathcal{J}}^0 \right] \mathcal{M}^2 (\theta) + \frac{1}{2} \text{Re} \left[\tilde{\mathcal{J}}_q \right] \mathcal{M}^2 (\theta) \sin^2 (\theta).$$

For small angles $M (\theta) \approx M (\theta = 0) = M_0$ and the eigenvalue equation is also valid:

$$E_q (\theta)^{\text{small}} \approx \theta E_{\text{FM}} + \frac{1}{2} \text{Re} \left[\tilde{\mathcal{J}}_q \right] M_0^2 \sin^2 (\theta)$$

$$\omega_q = M_0 \text{Re} \left[\tilde{\mathcal{J}}_q \right].$$

Magnon Energies for one Atom per Unit Cell

$$\omega_q = \lim_{\theta \to 0} \frac{2 [E_q (\theta) - E_{\text{FM}}]}{M_0 \sin^2 (\theta)}$$

The largest angles for which this equation holds depends on the material.
The Energy $E_q (\theta)$ of an spin spiral state with one magnetic atom per unit cell (for any θ):

$$E_q (\theta) = \frac{1}{2} \text{Re} \left[\tilde{J}^0 \right] M^2 (\theta) + \frac{1}{2} \text{Re} \left[\tilde{J}^q \right] M^2 (\theta) \sin^2 (\theta).$$

For small angles $M (\theta) \approx M (\theta = 0) = M_0$ and the eigenvalue equation is also valid:

$$E_q (\theta) \approx E_{FM} + \frac{1}{2} \text{Re} \left[\tilde{J}^q \right] M_0^2 \sin^2 (\theta)$$

$$\omega_q = M_0 \text{Re} \left[\tilde{J}^q \right].$$

Magnon Energies for one Atom per Unit Cell

$$\omega_q = \lim_{\theta \to 0} \frac{2 \left[E_q (\theta) - E_{FM} \right]}{M_0 \sin^2 (\theta)}$$

The largest angles for which this equation holds depends on the material.
Ground State Calculation

Excitations

Magnons: Definition, Properties...

Different Approaches to Calculate the \(\chi^{\pm}(q, \omega) \)

The Frozen Magnon Approach

Summary - Magnons

Energy Difference

\[
\Delta E_q(\theta) = \frac{\omega_q M_0}{2} \sin^2(\theta)
\]

Let's fit \(\Delta E_q(\theta) \) with \(A_0 \sin^2(\theta) \).

- Extremely good natured behavior for Fe.
- In the afternoon you will do FCC Ni, which shows a bit more 😊.
Ground State Calculation

Excitations

Magnons: Definition, Properties...

Different Approaches to Calculate the $\chi_{\pm}^+(q\omega)$

The Frozen Magnon Approach

Summary - Magnons

Energy Difference

\[
\Delta E_q (\theta) = \frac{\omega_q M_0}{2} \sin^2 (\theta)
\]

Let's fit $\Delta E_q (\theta)$ with $A_0 \sin^2 (\theta)$.

- Extremely good natured behavior for Fe.
- In the afternoon you will do FCC Ni, which shows a bit more 😊.
Ground State Calculation

Magnons: Definition, Properties...
Different Approaches to Calculate the \(\chi^{+-}(q\omega) \)
The Frozen Magnon Approach
Summary - Magnons

\[\Delta E_q(\theta) = \frac{\omega_q M_0}{2} \sin^2(\theta) \]

Let's fit \(\Delta E_q(\theta) \) with \(A_0 \sin^2(\theta) \).

- Extremely good natured behavior for Fe.
- In the afternoon you will do FCC Ni, which shows a bit more 😊.
Ground State Calculation
Excitations

Magnons: Definition, Properties...
Different Approaches to Calculate the $\chi^{+-}(q\omega)$
The Frozen Magnon Approach
Summary - Magnons

Energy Difference

$\Delta E_q(\theta) = \frac{\omega_q M_0}{2} \sin^2(\theta)$

Let’s fit $\Delta E_q(\theta)$ with $A_0 \sin^2(\theta)$.

- Extremely good natured behavior for Fe.
- In the afternoon you will do FCC Ni, which shows a bit more 😊.
● The excitation of magnons reduces the magnetic order.

● The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_c^{\text{MFA}} = \frac{M}{3k_B N} \sum_{q \in \text{BZ}} \omega_q$$

Random Phase Approximation

$$T_c^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{q \in \text{BZ}} \frac{1}{\omega_q} \right]^{-1}$$

● In RPA values close to zero have a strong weight, hence $T_c^{\text{RPA}} < T_c^{\text{MFA}}$.

● The MFA overestimates the critical temperature $T_c^{\text{exp}} < T_c^{\text{MFA}}$.

● As a rule of thumb one finds $T_c^{\text{RPA}} \approx T_c^{\text{exp}} < T_c^{\text{MFA}}$.
- The excitation of magnons reduces the magnetic order.

- The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_c^{\text{MFA}} = \frac{M}{3k_B N} \sum_{q \in \text{BZ}}^N \omega_q$$

Random Phase Approximation

$$T_c^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{q \in \text{BZ}}^N \frac{1}{\omega_q} \right]^{-1}$$

- In RPA values close to zero have a strong weight, hence $T_c^{\text{RPA}} < T_c^{\text{MFA}}$.

- The MFA overestimates the critical temperature $T_c^{\text{exp}} < T_c^{\text{MFA}}$.

- As a rule of thumb one finds $T_c^{\text{RPA}} \approx T_c^{\text{exp}} < T_c^{\text{MFA}}$.
- The excitation of magnons reduces the magnetic order.
- The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_{c}^{\text{MFA}} = \frac{M}{3k_B N} \sum_{q \in \text{BZ}} \omega_q$$

Random Phase Approximation

$$T_{c}^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{q \in \text{BZ}} \frac{1}{\omega_q} \right]^{-1}$$

- In RPA values close to zero have a strong weight, hence $T_{c}^{\text{RPA}} < T_{c}^{\text{MFA}}$.
- The MFA overestimates the critical temperature $T_{c}^{\exp} < T_{c}^{\text{MFA}}$.
- As a rule of thumb one finds $T_{c}^{\text{RPA}} \approx T_{c}^{\exp} < T_{c}^{\text{MFA}}$.
The excitation of magnons reduces the magnetic order.

The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_c^{\text{MFA}} = \frac{M}{3k_B N} \sum_{\mathbf{q} \in \text{BZ}} \omega_{\mathbf{q}}$$

Random Phase Approximation

$$T_c^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{\mathbf{q} \in \text{BZ}} \frac{1}{\omega_{\mathbf{q}}} \right]^{-1}$$

In RPA values close to zero have a strong weight, hence $T_c^{\text{RPA}} < T_c^{\text{MFA}}$.

The MFA overestimates the critical temperature $T_c^{\exp} < T_c^{\text{MFA}}$.

As a rule of thumb one finds $T_c^{\text{RPA}} \approx T_c^{\exp} < T_c^{\text{MFA}}$.
The excitation of magnons reduces the magnetic order.

The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_{c}^{\text{MFA}} = \frac{M}{3k_B N} \sum_{q \in \text{BZ}} \omega_q$$

Random Phase Approximation

$$T_{c}^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{q \in \text{BZ}} \frac{1}{\omega_q} \right]^{-1}$$

- In RPA values close to zero have a strong weight, hence $T_{c}^{\text{RPA}} < T_{c}^{\text{MFA}}$.

- The MFA overestimates the critical temperature $T_{c}^{\exp} < T_{c}^{\text{MFA}}$.

- As a rule of thumb one finds $T_{c}^{\text{RPA}} \approx T_{c}^{\exp} < T_{c}^{\text{MFA}}$.
The excitation of magnons reduces the magnetic order.

The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_c^{\text{MFA}} = \frac{M}{3k_B N} \sum_{q \in \text{BZ}} \omega_q$$

Random Phase Approximation

$$T_c^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{q \in \text{BZ}} \frac{1}{\omega_q} \right]^{-1}$$

- In RPA values close to zero have a strong weight, hence $T_c^{\text{RPA}} < T_c^{\text{MFA}}$.

- The MFA overestimates the critical temperature $T_c^{\text{exp}} < T_c^{\text{MFA}}$.

As a rule of thumb one finds $T_c^{\text{RPA}} \lesssim T_c^{\text{exp}} < T_c^{\text{MFA}}$.
The excitation of magnons reduces the magnetic order.

The energy needed to excite magnons is related to the critical temperature T_c.

Mean Field Approximation

$$T_c^{\text{MFA}} = \frac{M}{3k_B N} \sum_{\mathbf{q} \in \text{BZ}} \omega_{\mathbf{q}}$$

Random Phase Approximation

$$T_c^{\text{RPA}} = \frac{MN}{3k_B} \left[\sum_{\mathbf{q} \in \text{BZ}} \frac{1}{\omega_{\mathbf{q}}} \right]^{-1}$$

- In RPA values close to zero have a strong weight, hence $T_c^{\text{RPA}} < T_c^{\text{MFA}}$.
- The MFA overestimates the critical temperature $T_c^{\text{exp}} < T_c^{\text{MFA}}$.
- As a rule of thumb one finds $T_c^{\text{RPA}} \lesssim T_c^{\text{exp}} < T_c^{\text{MFA}}$.
Magnons are the low lying collective modes of the spin lattice.

At the moment the elk code can only calculate “frozen magnons”.

The frozen magnon frequencies are obtained by energy differences of ground state calculations (quick).

The Response function $\chi(q\omega)$ will be soon in the code giving access to QP lifetimes.

There is a simple connection $T_c \leftrightarrow \omega_q$ within the MFA or RPA.
Magnons are the low lying collective modes of the spin lattice.

At the moment the elk code can only calculate “frozen magnons”.

The frozen magnon frequencies are obtained by energy differences of ground state calculations (quick).

The Response function $\chi(q\omega)$ will be soon in the code giving access to QP lifetimes.

There is a simple connection $T_c \leftrightarrow \omega_q$ within the MFA or RPA.
Magnons are the low lying collective modes of the spin lattice.

At the moment the elk code can only calculate “frozen magnons”.

The frozen magnon frequencies are obtained by energy differences of ground state calculations (quick).

The Response function \(\chi(q\omega)\) will be soon in the code giving access to QP lifetimes.

There is a simple connection \(T_c \leftrightarrow \omega_q\) within the MFA or RPA.
- Magnons are the low lying collective modes of the spin lattice.

- At the moment the elk code can only calculate “frozen magnons”.

- The frozen magnon frequencies are obtained by energy differences of ground state calculations (quick).

- The Response function $\chi(q\omega)$ will be soon in the code giving access to QP lifetimes.

- There is a simple connection $T_c \leftrightarrow \omega_q$ within the MFA or RPA.
Magnons are the low lying collective modes of the spin lattice.

At the moment the elk code can only calculate “frozen magnons”.

The frozen magnon frequencies are obtained by energy differences of ground state calculations (quick).

The Response function $\chi(q\omega)$ will be soon in the code giving access to QP lifetimes.

There is a simple connection $T_c \leftrightarrow \omega_q$ within the MFA or RPA.
Thank you for your attention
Questions:

1. For translation invariant potentials $v(r)_{2 \times 2}$ one finds:

$$\hat{T} \left[v(r)_{2 \times 2} \varphi_{nk}^{\text{Bloch}}(r) \right] = v(r) \hat{T} \left[\varphi_{nk}^{\text{Bloch}}(r) \right],$$

which is necessary to reduce the calculation to one unit cell. How a potential must look like in the spin spiral case to obtain the same essential property i.e.:

$$\hat{T} \left[v(r)_{2 \times 2} \varphi_{nk}^{\text{SS}}(r) \right] = v(r)_{2 \times 2} \hat{T} \left[\varphi_{nk}^{\text{SS}}(r) \right].$$

2. When you found the form of the potential, what are contributions to the Hamiltonian that could destroy this symmetry?

3. Look at the susceptibility of FeSe. What is strange?
Things you probably need:

1. The form of the spin spiral wavefunction is

\[\varphi_{nk}^{SS}(r) = \begin{pmatrix} u_{nk}(1, r) e^{i(k - \frac{q}{2})r} \\ u_{nk}(2, r) e^{i(k + \frac{q}{2})r} \end{pmatrix} \]

where the functions \(u_{nk}(1, r) \) and \(u_{nk}(2, r) \) are translation invariant \(i.e. \hat{T}[u_{nk}(1, r)] = u_{nk}(1, r + T) = u_{nk}(1, r) \).

2. The picture of the \(\text{Im}\chi^{+-}(q\omega) \) in FeSe: